Integrating Predictive Biomarkers and Classifiers into Oncology Clinical Development Programs

Robert A. Beckman, MD

External Faculty, Center for Evolution and Cancer
Helen Diller Family Cancer Center
University of California, San Francisco

April 22, 2014
Predictive Biomarkers are Sometimes Essential for Any Approval At All

- Detailed simulation: Herceptin® would not have succeeded if studied in general population
- Iressa® failed in early lung cancer because predictive biomarker of epidermal growth factor receptor (EGFR) mutations was not appreciated
- Vectibix®: K-ras mutation status required for approval in colorectal cancer
Sometimes the Need for a Predictive Biomarker Sneaks Up on You

• Erbitux®: K-ras mutation status will likely soon be required for colorectal cancer, altering Imclone’s market
Sometimes a Biomarker Doesn’t Work, or Isn’t Needed

• EGFR expression does not predict response to Erbitux® in colorectal cancer
• Biomarker subsets were not required for sorafenib approval in renal cell cancer
 – But cost per QALY may suggest some biomarker work will be needed for these scenarios in the future
When Biomarkers Work, They Will…

- Generate products with real value, obvious to payors
- Result in smaller, cheaper Phase 3 studies:
 - Effective biomarker targeting means greater benefit
 - Needed Phase 3 study size gets 4 times smaller if the benefit doubles
- Reduce chance of failed Phase 3 studies, the largest contributor to poor ROI.
 - Herceptin® would have failed Phase 3 without predictive biomarker
When Biomarkers Don’t Work, They Will…

• Add cost
• Add complexity
• Add time
A Cross Functional Consensus

• Several years of cross functional discussion
• New clinical trial designs developed based on discussions
• Summarized in:
Objectives

• Increase utilization of biomarkers in oncology clinical development plans
• Provide broad guidelines for incorporation of biomarkers into clinical development plans
• Maximize efficiency of development of personalized medicines (greatest throughput per resource unit expended)
• Manage risk across oncology portfolio by series of adaptive, data-driven decisions
• Create biomarker driven strategies which address regulatory, commercial, and clinical execution issues
• Achieve cross-functional consensus on clinical strategies in biomarker driven environment
Proposed Strategic Principles

- Adaptive decision making
- Continuous integration of biomarker and clinical information
- Validation of clinical benefit ID hypothesis against qualified clinical endpoints
- Strategies designed to maximize objective functions such as utility per resource unit expended
Optimizing efficiency of clinical trials: example

• Efficiency optimized Phase 2 (P2) study*:
 – power and alpha chosen to maximize objective function of correctly identified effective drug per resource unit expended in P2/P3 development.
 – Results in smaller, more efficient RANDOMIZED studies, making biomarker work feasible.

*Chen, Cong and Beckman, Robert A. Maximizing Return on Socioeconomic Investment in Phase II Proof-of-Concept Trials, *Clinical Cancer Research*, Published online before print, February 13, 2014.
Drug Active

Large POC Trial Outcome

Yes (0.3)

False negative (0.2)

Benefit = 0; Cost = 160 = Cost of traditional POC trial

True positive (0.8)

Benefit = 1; Cost = 760 = Cost of traditional POC trial plus cost of Phase III trial

No (0.7)

False positive (0.1)

Benefit = 0; Cost = 760 = Cost of traditional POC trial plus cost of Phase III trial

True negative (0.9)

Benefit = 0; Cost = 160 = Cost of traditional POC trial

One large POC trial will be executed
Risk adjusted benefit = 0.24; Risk adjusted cost 346 patients; Efficiency = 6.9 X 10^-4
Drug Active

Small POC Trial Outcome

Yes (0.3)

False negative (0.4)

Benefit = 0; Cost = 80 = Cost of small POC trial

True positive (0.6)

Benefit = 1; Cost = 680 = Cost of small POC trial plus cost of Phase III trial

No (0.7)

False positive (0.1)

Benefit = 0; Cost = 680 = Cost of small POC trial plus cost of Phase III trial

True negative (0.9)

Benefit = 0; Cost = 80 = Cost of small POC trial

Two small POC trials will be executed
Risk adjusted benefit = 0.18 X 2; Risk adjusted cost = 460 patients; Efficiency 7.8X10^{-4}
Departing from Tradition and the Type III Error

- Traditional Type I and II error describe the false positive and negative rates
- Type III error describes the opportunity cost of not investigating valid hypotheses due to budgetary limitations
- Under a fixed budget, smaller than traditional randomized Phase 2 studies are optimal
Biomarker (BM) enriched P2 study:
- Designed to optimally test BM hypothesis by enrolling 50% BM+.
- Trial powered for independent analysis of BM+ and BM- subsets.
- Study has 4 groups: BM+ experimental, BM+ control, BM- experimental, BM- control
- Size using Chen-Beckman method applied to BM+ and BM- subsets

2D decision rule (Clark): see next slide
2D Decision rule for MK-0646 triple negative breast cancer (Clark)
Example of adaptive study design (II)
The Biomarker adapted P3 study

• BM Adaptive P3*
 – Study proceeds in full population.
 – Use data from P3 up to interim analysis and maturing data from P2 to:
 • Optimally focus analysis (“allocate alpha”) between full and sub-population
 • Maximize utility per cost function, such as power per study size, or expected ROI
 – Greater ROI than either traditional or biomarker driven P3

Phase 2 Influencing Phase 3 Adaptation: The Phase 2+ Method
Summary

- Predictive biomarkers will be increasingly essential to deliver competitive patient value
- Proposed guidelines for incorporation of biomarker hypotheses into clinical plans
- Key features:
 - Prioritization of clinical benefit id biomarker hypotheses
 - Validation of primary biomarker hypothesis against qualified clinical benefit endpoints
 - Adaptive decision-making within programs to progress to decision of whole population or biomarker selected subset
 - Use of IVD candidate in late phase studies → available for simultaneous registration with product
 - Health authority buy-in

April 22, 2014
Next Generation Personalized Medicine*

*Beckman RA, Schemmann GS, and Yeang CH. Impact of genetic dynamics and single-cell heterogeneity on development of nonstandard personalized medicine strategies for cancer. Proceedings of the National Academy of Sciences USA. Published online before print August 13, 2012, doi: 10.1073/pnas.1203559109
Heterogeneity Within Tumors

• Tumors are genetically unstable; this is the most efficient way for cancer to evolve*
• Genetic instability leads to multiple sub-populations of tumor cells
• Resistant sub-populations are selected in response to therapy
• This is likely the reason why targeted therapies generally work best as a complement to non-specific therapies like chemotherapy

Clinical Significance of the Mutator Hypothesis

- Heterogeneity
- Moving Target
A Simple Model

- Two drugs: Drug-1 and Drug-2
- Four cell types:
 - Sensitive cell S, killed by both Drug-1 and Drug-2
 - Resistant cell R1, killed only by Drug-2
 - Resistant cell R2, killed only by Drug-1
 - Incurable doubly resistant cell R1-2
- Genetic and epigenetic transitions between cell types
- Cell growth and death affected by drugs in dose dependent manner
- Partial resistance
- Patient can have a *mixture* of cells, which *evolves* over time

April 22, 2014
Current Personalized Medicine: 28 months to incurable relapse
Next Generation Personalized Medicine: Cure
Key questions

- How general are the benefits of this illustrative example?
- How great are the potential benefits of next generation personalized medicine?
- When is it important to focus on prevention of resistance as an even higher priority than treatment of the current tumor?
In Silico “Clinical Trial”: 3 million “patients”
A **strategy** is a data-driven method for planning a sequence of therapies
- When to treat with a combination and when to treat with sequential monotherapy
- When to change therapies

Like therapies, **strategies** may be individualized

The simulation compared 6 strategies
- Strategy 0 is the personalized medicine strategy: the patient is treated with the best drug for the observed predominant cell type and switched to the alternative drug upon tumor progression or relapse.
- Strategies 1, 2.1, 2.2, 3, and 4 (see backup for detail):
 - Used the evolutionary model to predict the total cell number and the likelihood of forming an incurable cell at the next 45 day timepoint
 - Gave therapy that minimized either total cell number or incurable cell likelihood
 - Differed in method of prioritizing total cell number vs incurable cells
Benefit of next generation personalized medicine is very general
Differences between Current Personalized Medicine and Next-Generation Personalized Medicine

<table>
<thead>
<tr>
<th>Current Personalized Medicine:</th>
<th>Next Generation Personalized Medicine:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus on average molecular characteristics</td>
<td>Minority subpopulations may be important</td>
</tr>
<tr>
<td>Focuses on current molecular characteristics and/or those at dx</td>
<td>Considers endgame, especially “penultimate states”</td>
</tr>
<tr>
<td>Thinks primarily of current step</td>
<td>Attempts to think several steps ahead</td>
</tr>
<tr>
<td>Mathematical optimization to inform current step (signatures)</td>
<td>Piecewise, or even global, optimization of entire treatment course</td>
</tr>
</tbody>
</table>

April 22, 2014
Next Generation Personalized Medicine: High Level Conclusions

- The current strategy used for personalized therapy of cancer is not the only possible one.
- Genetic heterogeneity and evolutionary dynamics can greatly influence the optimal strategy for personalized medicine.
- The systematic study of non-standard personalized medicine strategies as a function of population substructure and evolutionary dynamics is an important area for investigation.
 - It’s not just about these particular models or strategies.
- Benefits are potentially highly significant and very general across a large variety of tumor and therapy characteristics.
Acknowledgements: Predictive Biomarkers

National Cancer Institute:
- Richard Simon
Foundation for the NIH Cancer Biomarker Steering Committee
- David Parkinson
Merck Research Laboratories
- **Cong Chen**
- **Jason Clark**
- Don Bergstrom
- Robert Phillips
- Peter Shaw
- Georgianna Harris
- Judy Milloy
- Tim Demuth
- Karl Hsu
- Li Yan
- Paula Ehrlich
- David Geho
- Keaven Anderson
- Pam Carroll
- Caroline Buser –Doepner
- Christine Gause
- Cheryl Pickett
- Briggs Morrison
- Barry Gertz

Rosetta Bioinpharmatics
- Tom Fare
Daiichi Sankyo
- Masashi Aonuma
- Tomas Bocanegra
- Bruce Dornseif
- Sean Ge
- Igor Gorbachevsky
- Glenn Gormley
- Abdel Halim
- Xiaoping Jin
- Prasanna Kumar
- Kejian Liu
- Kenji Nakamaru
- Michael Rosen
- Daniel Salazar
- Richard Scheyer
- Giorgio Senalidi
- Sandra Smith
- Archie Tse
- Reinhard von Roemeling
- Joseph Walker
- Qiang Wang
- Yibin Wang

Amgen
- Agnes Ang
- Darrin Beaupre
- Linda Chen
- Daniel Freeman
- Elwyn Loh
- Ian McCaffrey
- Erik Rasmussen
- Michael Wolf
U3 Pharma
- Kouichi Akahane
- Thore Hettmann
Acknowledgements: Next Generation Personalized Medicine

Institute for Advanced Study (IAS), Princeton:
- **Chen-Hsiang Yeang (CHY)**
- Alexei Vazquez
- Eric Maskin
- Prashanth Ak
- Guna Rajagopal

University of Washington:
- **Lawrence A. Loeb**

Princeton University:
- **Gunter Schemmann**
- Dan Notterman

Ludwig Institute
- Andrew Scott

Fox Chase Cancer Center
- Alfred Knudson

Cancer Institute of New Jersey:
- Hatem Sabaawy

Nodality, Inc.:
- David Parkinson
- Alessandra Cesano

TGEN
- Daniel D. von Hoff
- Triphase Accelerator Corp.
- Robert Corringham

National Cancer Institute:
- Richard Simon
- Paul Meltzer

University of California at San Francisco:
- Frank McCormick

Academia Sinica, Taiwan:
- Ming-Ren Yen

Daiichi Sankyo
- Reinhard von Roemeling

Independent:
- Daniel Rabin
- Susan J Ward

Work initiated while RAB and CHY were members (RAB, CHY) and visitors (RAB) at IAS:
- Arnold Levine, Director, Simons Center for Systems Biology, IAS
- Peter Goddard, Director, IAS

April 22, 2014