Adaptive Dose Ranging Studies:
Flexible, Adaptive Dose-Finding Designs

Frank Bretz and José Pinheiro

Novartis Pharmaceuticals

Tokyo University of Science, July 28, 2006
Outline

- Background and motivation
- Adaptive Dose Ranging Studies PhRMA initiative: goals and scope
- Evaluating DF methods: simulation study
- Simulation results
- Conclusions
- Preliminary recommendations
Background

- Pharmaceutical industry **pipeline problem**: decreasing number of approved drugs, despite advances in basic science

- FDA’s **Critical Path Initiative** — “Innovation vs. Stagnation” White Paper

- Pharmaceutical industry (PhRMA) reaction: different working groups (WGs) addressing **key drivers** of poor performance

- Adaptive Dose Ranging Studies (ADRS) group formed to address problems with inefficient **dose finding** performance
Adaptive Dose Ranging Studies core WG members

- Alex Dmitrienko, Eli Lilly
- Amit Roy, BMS
- Brenda Gaydos, Eli Lilly
- Frank Bretz, Novartis
- Frank Shen, BMS
- Greg Enas, Eli Lilly
- José Pinheiro, Novartis
- Michael Krams, Pfizer
- Qing Liu, J & J
- Rick Sax, AstraZeneca
- Tom Parke, Tessella
ADRS additional WG members

- Björn Bornkamp, University of Dortmund
- Beat Neuenschwander, Novartis
- Chyi-Hung Hsu, Pfizer
- Franz König, Med. Univ. Vienna
ADRS initiative – Motivation

- Poor understanding of dose response (DR) for both efficacy and safety is pervasive in drug development.

- Indicated by both FDA and industry as one of root causes of late phase attrition and post-marketing problems with approved drugs.

- Current dose finding designs and methods focus on selection of target dose (e.g., minimum effective dose) out of fixed, generally small number of dose levels, via pairwise hypothesis testing \implies inefficient.
ADRS initiative – Goals

- Investigate and develop designs and methods for efficiently learning about safety and efficacy DR profile \Rightarrow benefit/risk profile
- More accurate and faster decision making on dose selection and improved labeling
- Evaluate statistical operational characteristics of alternative designs and methods to make recommendations on their use in practice
- Increase awareness about this class of designs, promoting their use, when advantageous
ADRS – Definition and Scope

• Adaptive dose-ranging designs allowing dynamic allocation of patients and possibly variable number of dose levels based on accumulating information

• Intended to strike balance between need for additional DR information and increased costs and time-lines

• Emphasis on modeling/estimation (learning) as opposed to hypothesis testing (confirming)

• Investigate existing and new ADRS methods via simulation

• Evaluate potential benefits over traditional dose-ranging designs over variety of scenarios to make recommendations on practical usefulness of ADRS methods
Dose Finding Methods – Fixed Doses

- Traditional **ANOVA** based on pairwise comparisons and multiplicity adjustment (Dunnett); common approach used in dose finding studies

- **MCP-Mod** combination of multiple comparison procedure (MCP) to identify presence of DR and modeling, to estimate target dose(s) and DR profile (Bretz, Pinheiro and Branson, 2005)

- **MTT**: novel method based on Multiple Trend Tests

- Bayesian Model Averaging: **BMA**

- Nonparametric local regression fitting: **LOCFIT**
Dose Finding Methods – ADRS

- **GADA**: Dynamic dose allocation based on Bayesian normal dynamic linear model (Krams, Lees and Berry, 2005); allocation of patients to dose adaptively changed according to model-based optimization criteria (e.g., variance of target dose estimate)

- **D-opt**: novel adaptive dose allocation based on D-optimality criterion used with sigmoid-E_{max} model; model parameters re-estimated at interim analysis and corresponding D-optimal allocation determined for next interval
Simulation study: design and assumptions

- Proof-of-concept + dose finding trial, motivated by neuropathic pain indication
- Key questions: whether there is evidence of dose response and, if so, which dose level to bring to confirmatory phase and how well dose response (DR) curve is estimated
- Primary endpoint: change from baseline in VAS at Week 6
- Dose design scenarios:
 - 5 equally spaced doses levels 0, 2, 4, 6, 8
 - 7 unequally spaced dose levels: 0, 2, 3, 4, 5, 6, 8
 - 9 equally spaced dose levels: 0, 1, …, 8
- Significance level: one-sided FWER $\alpha = 0.05$
- Sample sizes: 150 and 250 patients (total)
Dose response profiles

![Dose response profiles graph](image)

- Expected change from baseline in VAS at Week 6
- Dose

Legend:
- Umbrella
- Emax
- Sigmoid Emax
- Flat
- Linear
- Logistic
Measuring performance

- Probability of identifying dose response: $Pr(DR)$
- Probability of identifying clinical relevance and selecting a dose for confirmatory phase: $Pr(dose)$
- Dose selection
 - Distribution of selected doses (rounded to nearest integer, if continuous estimate possible)
Dose selection performance (cont.)

- Target dose interval – doses that produce effect within $\pm 10\%$ of target effect Δ

<table>
<thead>
<tr>
<th>Model</th>
<th>Target dose</th>
<th>Target interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>actual</td>
<td>rounded</td>
</tr>
<tr>
<td>Linear</td>
<td>6.30</td>
<td>6</td>
</tr>
<tr>
<td>Logistic</td>
<td>4.96</td>
<td>5</td>
</tr>
<tr>
<td>Umbrella</td>
<td>3.24</td>
<td>3</td>
</tr>
<tr>
<td>Emax</td>
<td>2.00</td>
<td>2</td>
</tr>
<tr>
<td>Sig-Emax</td>
<td>5.06</td>
<td>5</td>
</tr>
</tbody>
</table>

- Probabilities of under-, over-, and correct interval estimation:

 \[P^- = P(\hat{d}_{targ} < d_{min}), \quad P^+ = P(\hat{d}_{targ} > d_{min}), \]

 \[P^o = 1 - (P^- + P^+) \]
Sample of Simulation Results
Probability of identifying DR, $N = 150$
Probability dose selection – flat DR, N = 150
Probability dose selection, N = 150
Prob. of interval dose selection, Logistic model

- No dose
- N = 150
- Under
- N = 250
- Right
- N = 250
- UNF

- 5 doses
- 7 doses
- 9 doses

- LOCFIT
- BMA
- MTT
- MCPNed
- GADA
- Dopt
- ANOVA

Probability (%)
Estimated dose distrib., Logistic model and N = 150
Prob. of interval dose selection, Umbrella model

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>No dose</td>
<td></td>
</tr>
<tr>
<td>N = 250</td>
<td></td>
</tr>
<tr>
<td>LOCFIT</td>
<td></td>
</tr>
<tr>
<td>BMA</td>
<td></td>
</tr>
<tr>
<td>MTT</td>
<td></td>
</tr>
<tr>
<td>MCPMed</td>
<td></td>
</tr>
<tr>
<td>GADA</td>
<td></td>
</tr>
<tr>
<td>Dopt</td>
<td></td>
</tr>
<tr>
<td>ANOVA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>No dose</td>
<td></td>
</tr>
<tr>
<td>N = 150</td>
<td></td>
</tr>
<tr>
<td>LOCFIT</td>
<td></td>
</tr>
<tr>
<td>BMA</td>
<td></td>
</tr>
<tr>
<td>MTT</td>
<td></td>
</tr>
<tr>
<td>MCPMed</td>
<td></td>
</tr>
<tr>
<td>GADA</td>
<td></td>
</tr>
<tr>
<td>Dopt</td>
<td></td>
</tr>
<tr>
<td>ANOVA</td>
<td></td>
</tr>
</tbody>
</table>

Probability (%)

- 5 doses
- 7 doses
- 9 doses
Estimated dose distrib., Umbrella model and N = 150

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>ANOVA</th>
<th>Dopt</th>
<th>GADA</th>
<th>MCPMod</th>
<th>MTT</th>
<th>BMA</th>
<th>LOCFIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>7 doses</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>5 doses</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>5 doses</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dose selected

- ANOVA
- Dopt
- GADA
- MCPMod
- MTT
- BMA
- LOCFIT

% Trials

- 22

Dose selected

- ANOVA
- Dopt
- GADA
- MCPMod
- MTT
- BMA
- LOCFIT
Average prediction error per dose, N = 150
Sample predicted curves: Logistic, 9 doses and N = 150
Sample predicted curves: Umbrella, 5 doses and N = 250
Conclusions

- Detecting DR is considerably easier than estimating it
- Current sample sizes for DF studies, based on power to detect DR, are inappropriate for dose selection and DR estimation
- None of methods had good performance in estimating dose in the correct target interval: maximum observed percentage of correct interval selection – 60% \Rightarrow larger N needed
- Adaptive dose-ranging methods (i.e., ADRS) lead to gains in power to detect DR, precision to select target dose, and to estimate DR – greatest potential in the latter two
- GADA had best overall performance, especially on DR estimation
Conclusions (cont.)

- Model-based methods have superior performance compared to methods based on hypothesis testing.

- Number of doses larger than 5 does not seem to produce significant gains (provided overall N is fixed) \implies trade-off between more detail about DR and less precision at each dose.

- In practice, need to balance gains associated with adaptive dose ranging designs approach against greater methodological and operational complexity.
Preliminary Recommendations

• Adaptive, model-based dose-ranging designs should be used routinely in drug development, as they can lead to substantial gains in performance over traditional DF methods.

• Sample size calculations for Phase II studies should take into account desired precision of estimated target dose and possibly also estimated DR (current methods are not appropriate).

• When resulting sample size is not feasible, should consider selecting two or three doses for confirmatory phase to increase likelihood of including “correct” dose – adaptive designs could be used in confirmatory phase for greater efficiency (e.g., dropping less efficient doses earlier).
Preliminary Recommendations (cont.)

- Proof-of-concept (PoC) and dose selection should be combined, when feasible, into one seamless trial.

- Early stopping rules, for both efficacy and futility, should be used when feasible to allow greater efficiency in adaptive designs – Bayesian methods are particularly well-suited for this purpose.

- Trial simulations should be used to determine appropriate sample sizes, as well as for estimating operational characteristics of designs/methods under consideration.
References
